Seasonal Climate Watch June to Oct 2025 Date issued: 04 June 2025 #### 1. Overview The El Niño-Southern Oscillation (ENSO) is firmly in a neutral state and is predicted to be in a neutral state for the foreseeable future. ENSO, however, has limited influence on the South Africa during the winter seasons and is not expected to have a significant impact. During winter and early spring, the areas that receive significant seasonal rainfall is limited to the southwestern parts of the country and the southern and eastern coastal areas. During mid-winter the southwest and eastern coastal areas are expected to receive above-normal rainfall, however during late-winter and early spring only the eastern coastal areas' expected rainfall remains above-normal, with the south-west's outlook changing to below-normal rainfall. Minimum and maximum temperatures are largely expected to be above-normal for the most parts during the winter season, with the notable exception of the southern coastal areas that are expected to see parts of it be below-normal. The SAWS will continue to monitor the weather and climate conditions and provide updates on any future assessments that may provide more clarity on the current expectations for the coming season. ### 2. South African Weather Service Prediction System ## 2.1. Ocean-Atmosphere Global Climate Model This section is under review and reconstruction due to the recent cyber security attack. #### 2.2. Seasonal Forecasts for South Africa from the SAWS seasonal prediction system The GFDL-SPEAR and COLA-RSMAS-CCSM4 systems (part of the North American Multi-Model Ensemble System) for South Africa, as issued with the May 2025 initial conditions, and are presented below (District names can be seen in the appendix indicated in Figure A4): **Figure 3:** June-July-August 2025 (JJA; left), July-August-September 2025 (JAS; right), August-September-October 2025 (ASO; bottom) seasonal precipitation prediction. Maps indicate the highest probability of the above-normal and below-normal categories. Please refer to appendix Figure A1 for forecast skill levels. **Figure 4**: June-July-August 2025 (JJA; left), July-August-September 2025 (JAS; right), August-September-October 2025 (ASO; bottom) seasonal minimum temperature prediction. Maps indicate the highest probability of the above-normal and belownormal categories. Please refer to appendix Figure A2 for forecast skill levels. **Figure 5:** June-July-August 2025 (JJA; left), July-August-September 2025 (JAS; right), August-September-October 2025 (ASO; bottom) seasonal maximum temperature prediction. Maps indicate the highest probability of the above-normal and belownormal categories. Please refer to appendix Figure A3 for forecast skill levels. #### 2.3. Climatological Seasonal Totals and Averages The following maps indicate the rainfall and temperature (minimum and maximum temperature) climatology for the June-July-August, July-August-September and August-September-October seasons. The rainfall and temperature climates are representative of the average rainfall and temperature conditions over a long period of time for the relevant 3-month seasons presented here. **Figure 6:** Climatological seasonal totals for precipitation during June-July-August (JJA; left), July-August-September (JAS; right) and August-September-October (ASO; bottom). **Figure 7:** Climatological seasonal averages for minimum temperature during June-July-August (JJA; left), July-August-September (JAS; right) and August-September-October (ASO; bottom). **Figure 8:** Climatological seasonal averages for maximum temperature during June-July-August (JJA; left), July-August-September (JAS; right) and August-September-October (ASO; bottom). #### 3. Summary implications to various economic sector decision makers #### **Water and Energy** The anticipated above-normal rainfall over the southwest and eastern coastal areas during mid-winter and late-winter and early spring over the eastern coastal areas might not be significant enough to benefit water resources in terms of improving the water levels in reservoirs. Possible benefits are likely to cancel out due to the anticipated above-normal temperatures, further impacting water levels in areas such as the Eastern Cape and Mpumalanga, where a number of settlements are still impacted by the on-going drought conditions. Additionally, minimum, and maximum temperatures are expected to be mostly above normal in most regions, except for the southern coastal areas, where below-normal temperatures are expected. These conditions are likely to result in increased demand for space heating during the forecast period. Relevant decision-makers are encouraged to take note of these possible outcomes and communicate with affected businesses and communities accordingly. #### Health The predicted above-normal minimum and maximum temperatures across most parts of South Africa during the winter season—excluding certain southern coastal areas where below-normal temperatures are anticipated—may have several health implications. Elevated temperatures can increase the risk of prolonged exposure to ultraviolet (UV) radiation, raising the likelihood of sunburn, skin damage, and other UV-related health issues. In addition, the forecasted above-normal rainfall for the eastern coastal areas during late winter and early spring may result in health concerns associated with wetter conditions, such as an increased risk of waterborne diseases and vector-borne illnesses. Moreover, the anticipated below-normal rainfall in the south-western parts during late-winter and early spring may cause health problems related to drier conditions. Prolonged dry conditions may elevate respiratory health risks by increasing airborne dust and pollutants, disproportionately affecting individuals with chronic respiratory conditions. The predicted below-normal rainfall is also likely to affect water availability in areas with existing water challenges, which might increase dependency on unsafe or poorly treated water sources. Communities in these regions are strongly advised to take appropriate precautions and adhere to the guidance provided by local authorities and health officials. #### **Agriculture** Above-normal rainfall is predicted for the southwest and eastern coastal regions of the country during mid-winter, which will likely have a positive impact on crop and livestock production. However, below-normal rainfall is expected for the south-western part in late-winter and early spring, which could have a negative impact on agriculture. Therefore, the relevant decision-makers are encouraged to advise farmers in these regions to practice soil and water conservation, proper water harvesting and storage, and other appropriate farming practices. This forecast is updated monthly, and users are advised to monitor the updated forecasts, as there is a possibility for them to change, especially the longer lead-time forecasts. Moreover, farmers are advised to keep monitoring the weekly and monthly forecasts issued by the SAWS. Farmers are also advised to keep on monitoring advisories from the Department of Agriculture and make changes as required. #### 4. Contributing institutions and useful links All the forecasts presented here are a result of the probabilistic prediction based on the ensemble members from the coupled climate model from the SAWS and two models from the NMME. Other useful links for seasonal forecasts are: - http://www.weathersa.co.za/home/seasonal (Latest predictions from the SAWS for the whole of SADC) - https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/ (ENSO predictions from various centres) - https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/ (Copernicus Global forecasts) # Appendix - Verification The following three figures show the Relative Operating Characteristic (ROC) scores for the relevant multi-model forecasts in the main document. The ROC scores are commonly used in seasonal forecasts to determine the areas where the forecasts perform well, so that the user can make more informed decisions on using the given forecast. As a general guideline, a score over 0,5 is technically better than chance, however, scores around and higher than 0,6 are considered to have significant skill to add confidence to the forecast. From the figures there will be two ROC scores per season per variable, which indicate the score when a certain rainfall or temperature category is favoured. For example, if an area is favoured to receive above-normal rainfall, then the ROC score to look at would be the one calculated for the above-normal category (right side of the figures below). Also, make sure to look at the correct corresponding seasons indicated in the title of each map. The aim of these maps is to add (or remove) confidence of a particular forecast over certain areas for specific seasons. Seasonal model skill over South Africa can be highly variable, highlighting the importance of knowing exactly where the forecasting system generally performs well or where it may struggle. It is important to note that the maps do not indicate where the current forecast will be correct or incorrect but rather highlights confidence levels in the forecasting system. **Figure A1:** ROC scores for rainfall relevant to the current forecasts in Figure 3. Figure A2: ROC scores for minimum temperatures relevant to the current forecasts in Figure 4. Figure A3: ROC scores for maximum temperatures relevant to the current forecasts in Figure 5. # Appendix – District Information ## District Boundaries Figure A4: Local District Map with numbers corresponding to the table below with names. #### **Table with District Names and Numbers** | Table with district values and rumbers | | | | | | | | |--|--------------------|-----|----------------------|-----|---------------------------|-----|-------------------| | Nr. | District Name | | 1 | Buffalo City | 16 | Ekurhuleni | 31 | Vhembe | 46 | Dr Kenneth Kaunda | | 2 | Sarah Baartman | 17 | City of Johannesburg | 32 | Capricorn | 47 | City of Cape Town | | 3 | Amathole | 18 | City of Tshwane | 33 | Waterberg | 48 | West Coast | | 4 | Chris Hani | 19 | Ugu | 34 | Sekhukhune | 49 | Cape Winelands | | 5 | Joe Gqabi | 20 | Umgungundlovu | 35 | Gert Sibande | 50 | Overberg | | 6 | O.R.Tambo | 21 | Uthukela | 36 | Nkangala | 51 | Garden Route | | 7 | Alfred Nzo | 22 | Umzinyathi | 37 | Ehlanzeni | 52 | Central Karoo | | 8 | Nelson Mandela Bay | 23 | Amajuba | 38 | John Taolo Gaetsewe | | | | 9 | Xhariep | 24 | Zululand | 39 | Namakwa | | | | 10 | Lejweleputswa | 25 | Umkhanyakude | 40 | Pixley ka Seme | | | | 11 | Thabo Mofutsanyane | 26 | King Cetshwayo | 41 | Z F Mgcawu | | | | 12 | Fezile Dabi | 27 | iLembe | 42 | Frances Baard | | | | 13 | Mangaung | 28 | Harry Gwala | 43 | Bojanala | | | | 14 | Sedibeng | 29 | eThekwini | 44 | Ngaka Modiri Molema | | | | 15 | West Rand | 30 | Mopani | 45 | Dr Ruth Segomotsi Mompati | | |